壓鑄模具的結構設計會決定金屬液在高壓射入時的流動方式,因此型腔幾何、流道寬度與澆口配置都需根據產品的厚薄、形狀與強度需求進行規劃。當流道阻力分布均勻,金屬液能迅速且完整填滿模腔,使薄壁與細節區域精準成形,降低縮孔、變形與填不滿的風險。若流向設計不良,則容易產生渦流或冷隔,使產品精度與一致性下降。
散熱設計則是模具性能的重要基礎。壓鑄過程會讓模具經歷快速高溫循環,若冷卻水路配置不均或距離過遠,模具局部會出現熱集中,使成品表面產生亮斑、粗糙紋理或翹曲。良好的冷卻通道能快速調節模具溫度,使成形條件更一致,縮短生產週期,並降低熱疲勞造成的裂紋,使模具更耐用。
型腔表面品質則取決於加工精度與表層處理。經過高精度切削與拋光的型腔能讓金屬液貼附更均勻,使成品表面平滑細緻;若搭配耐磨強化處理,能降低長期生產造成的型腔磨耗,使外觀品質在大量生產中仍能保持穩定。
模具保養的重點在於確保長期量產的穩定性。分模面、排氣孔與頂出系統在生產過程中易累積積碳、金屬粉渣與磨損,若未定期清潔或修整,會使頂出不順、毛邊增加或散熱下降。透過定期巡檢、清潔與修補,可延長模具壽命並維持壓鑄品質與效率。
壓鑄製品的品質要求對最終產品的功能和結構穩定性至關重要。在壓鑄製程中,常見的問題如精度誤差、縮孔、氣泡和變形,這些缺陷會直接影響到壓鑄件的性能和耐用性。這些問題的來源大多與金屬熔液流動、模具設計、冷卻過程等因素有關,因此理解問題的來源和有效的檢測方法,對於品質管理至關重要。
精度誤差通常由金屬熔液流動不均、模具設計不當或冷卻過程不穩定所造成。這些誤差會使壓鑄件的尺寸與設計標準不符,影響部件的裝配精度與功能。為了確保精度,三坐標測量機(CMM)是常用的精度檢測工具,這種設備能夠精確地測量每個壓鑄件的尺寸,並將其與設計標準進行比對,從而發現並修正誤差。
縮孔問題常見於金屬冷卻過程中,特別是製作較厚部件時。熔融金屬冷卻後會因收縮而在內部形成空洞,這些縮孔會削弱壓鑄件的強度。X射線檢測技術被廣泛應用於檢測縮孔,它能夠穿透金屬,顯示內部結構,幫助及早發現並修正縮孔問題。
氣泡缺陷則通常由熔融金屬未能完全排除模具中的空氣引起。這些氣泡會在金屬內部形成微小的空隙,降低金屬的密度與強度。超聲波檢測技術是有效的氣泡檢測方法,它能夠通過反射的聲波來定位氣泡的大小和位置,從而有效發現並處理這些缺陷。
變形問題通常源於冷卻過程中的不均勻收縮,這會導致壓鑄件形狀的變化,影響外觀和結構穩定性。紅外線熱像儀可用來監測冷卻過程中的溫度分佈,幫助確保冷卻過程均勻,減少由冷卻不均引起的變形問題。
鋁、鋅、鎂是壓鑄中常用的三種金屬,每種材料在強度、重量、耐腐蝕性與成型效果上都有明顯差異。鋁合金擁有高強度與輕量化特性,密度低、結構穩定,耐腐蝕性良好,適合用於汽車零件、散熱模組及中大型機殼。鋁在高壓射出下可獲得穩定填充,表面光滑且尺寸精準,兼顧結構承重與外觀。
鋅合金的最大特點是流動性優異,能填滿複雜模具的細節,適合精密小型零件,如五金配件、扣具、齒輪及電子元件。鋅熔點低,能降低能耗並延長模具壽命,韌性與耐磨性佳,但密度較大,重量偏高,因此不適合追求輕量化的產品。
鎂合金則以極輕重量著稱,密度僅約為鋁的三分之二,強度重量比高,非常適合3C產品外殼、車內結構件或運動器材。鎂成型速度快、吸震效果好,能改善產品手感與結構穩定性。耐腐蝕性稍弱,但透過表面處理可提升防護性能,擴大應用範圍。
鋁適合耐用與承重中大型件,鋅擅長精密小零件,鎂則適合輕量化設計,三種材料特性差異明顯,可依產品需求選擇最適合的壓鑄材料。
壓鑄以高壓快速填充模腔,使金屬液能迅速成型,特別適合大量生產外型複雜、尺寸一致性高的零件。高速充填帶來良好致密度,表面平滑、細節清晰,後加工需求減少,使其在效率、精度與成本之間取得優勢,尤其適用於中小型金屬零件。
鍛造透過外力塑形金屬,使材料內部組織更緊密,因此強度高、耐衝擊性佳。雖然鍛造件在結構性能上優於壓鑄,但成型週期較長、模具成本高,且難以塑造複雜幾何,較常用於需要承受高負載的關鍵零件。
重力鑄造靠金屬液自然流入模具,製程設備簡單,模具壽命長,但充填速度慢,細節呈現度不如壓鑄。由於冷卻時間較長,產量受到限制,適合中大型、壁厚均勻、外形較簡單的產品需求。
加工切削以刀具去除材料,是精度最高的工法之一,能達到極窄公差與優異表面品質。然而加工時間長、材料耗損高,使成本提升,較適合試作品、小量生產或作為壓鑄後的精密修整方式。
不同製程在效率、精度與成本上具備明顯差異,依產品需求與預算即可選擇最適合的金屬成型方式。
壓鑄是一種以高壓將熔融金屬射入模具,使金屬迅速凝固成形的加工方式,常用於生產外型複雜、尺寸需要高度一致的金屬零件。製程從金屬材料準備開始,常見鋁合金、鋅合金與鎂合金,在高溫下能保持優良流動性,進入模腔後可完整呈現細節。
模具是壓鑄技術的核心,由固定模與活動模組成,兩者閉合後形成產品的模腔。模具內部設計包含澆口、排氣槽及冷卻水路,各自負責金屬液流動與凝固品質。澆口用於導引熔融金屬正確流入模腔;排氣槽排出模內空氣,使填充更順暢;冷卻水路則控制模具溫度,使金屬在凝固時不致產生變形或縮痕。
金屬在熔融後會注入壓室,並在高壓力驅動下高速射入模具。這個高壓射出階段是壓鑄最具特色的工序,能讓金屬液瞬間填滿所有區域,即使是薄壁、尖角或複雜幾何,也能確實成形。金屬液與模壁接觸後立即冷卻,由液態轉成固態,外型在極短時間內被鎖定。
當金屬完全凝固後,模具會開啟並透過頂出裝置將成形零件推出。脫模後的零件通常會進行修邊、倒角或簡易表面加工,使外觀更為完整並貼近使用需求。整個壓鑄流程依靠材料流動性、高壓注射與模具結構的精準配合,形成高效率與高精度兼具的金屬成形工藝。