在壓鑄製程中,材料的選擇直接影響產品的結構強度、外觀品質與使用壽命。鋁合金以高強度、低密度及良好的耐腐蝕性聞名,適合需要兼具輕量化與堅固度的零件。鋁的散熱表現也十分突出,因此常用於車燈外殼、電子機殼與散熱模組,能在高溫環境下維持穩定性能。
鋅合金的成型能力則更為優異,流動性好且熔點低,能精準填充複雜模具,適合製作精細外觀、薄壁或高精度的小型零件。鋅的硬度與耐磨性強,使其廣泛應用於五金配件、齒輪、拉手與結構性組件。其表面光滑細緻,也利於後續電鍍與塗裝,提升產品質感。
鎂合金則以超輕重量著稱,是現今可壓鑄結構金屬中最輕的一種,強度重量比極佳。鎂的加工速度快、震動吸收能力強,適合使用於3C產品外殼、車用輕量部件與運動器材。雖然其耐腐蝕性相較鋁與鋅略弱,但透過表面處理即可補足,使其在輕量化需求強烈的領域備受重視。
不同材料在強度、重量、耐蝕性與成型表現上皆有差異,根據產品功能與成本考量選擇最適合的金屬,能使壓鑄製品在性能與外觀上都達到最佳效果。
壓鑄模具的結構設計會直接左右產品精度,其中型腔加工的準確度與幾何一致性是最關鍵的基礎。當型腔結構緊密、表面平整,金屬液在高速射入時能保持穩定流動,使產品的尺寸、厚度與邊角表現更一致。若流道與澆口配置不合理,充填速度會受到干擾,容易出現冷隔、縮孔與變形等成形問題。
散熱系統的設計會影響模具在高溫循環中的穩定度。壓鑄過程中溫度劇烈變化,若冷卻水路分布不均,模具內部會形成不同溫度區塊,使金屬液凝固速度不一致,產品表面可能出現光澤差異或流痕。均衡的散熱設計能讓模具快速恢復到適合的操作溫度,使每次生產條件保持一致,提高生產效率與良率。
模具表面品質更是影響外觀與脫模效果的重要因素。經過高精度拋光與耐磨處理的型腔能讓金屬液形成後呈現平滑細緻的表面,不易出現刮痕與麻點。若型腔表面因磨損而粗化,產品外觀缺陷會隨生產量增加而更加明顯。
耐用度部分則取決於模具材料強度、結構支撐與排氣設計。高強度材料能承受反覆高壓射出,而良好的排氣槽能協助排除型腔內氣體,避免爆氣痕跡並減少局部燒蝕,延長模具壽命。
日常保養對模具表現同樣重要。定期清潔排氣孔、確認水路暢通並檢查分模面是否平整,能避免精度下降與瑕疵累積,使模具在長期量產中維持穩定品質。
在壓鑄製程中,品質管理是確保產品達到設計要求的關鍵。壓鑄製品的品質問題通常涉及精度誤差、縮孔、氣泡和變形等,這些缺陷會直接影響產品的結構強度、外觀及功能,因此需要採取精密的檢測方法進行監控。
壓鑄件的精度是品質管理中最基本的要求之一。在壓鑄過程中,由於熔融金屬的流動性、模具磨損和溫度變化等因素,可能會導致產品尺寸或形狀上的誤差。為了確保產品精度,三坐標測量機(CMM)是常用的檢測設備。這項設備可以精確測量製品的尺寸,並與設計圖紙進行比對,及時發現偏差,從而保證產品的精度達標。
縮孔問題常出現在金屬冷卻過程中,尤其是在厚壁部件的製造中。當熔融金屬在凝固過程中收縮時,會在內部形成孔洞,這些縮孔會大大降低壓鑄件的強度和可靠性。X射線檢測技術能有效發現這些內部缺陷。X射線能穿透金屬,顯示其內部結構,從而幫助檢測人員發現縮孔並進行修正。
氣泡問題則是由於熔融金屬未能完全排出模具內的空氣所引起。這些氣泡會影響金屬的密度,從而導致製品的強度下降。超聲波檢測是一種常見的氣泡檢測方法,通過發射聲波並測量反射波,可以準確地定位內部氣泡,從而確保產品的結構穩定。
變形問題通常是由於冷卻過程中的不均勻收縮所引起。冷卻過快或不均勻會導致壓鑄件形狀的變化,影響其外觀和使用性能。為了檢測這些變形,工程師會使用紅外線熱像儀來監控冷卻過程中的溫度分佈,從而確保冷卻過程的均勻性,減少變形的風險。
壓鑄是利用高壓將熔融金屬液迅速注入模具,這使其在高產量和高精度的生產中非常有效。壓鑄能夠快速成型複雜結構和薄壁零件,並且在冷卻後具有穩定的尺寸與表面品質。由於其生產週期短,適合大量生產,並且在高產量的情況下單件成本會顯著下降。壓鑄的主要缺點是初期模具成本較高,並且不適合承受極高機械應力的零件。這使得壓鑄非常適合電子外殼、汽車零部件等大規模生產的精密件。
鍛造則是通過外力使金屬材料發生塑性變形,並改善其內部結構,從而增強金屬的強度和韌性。鍛造的最大優勢是高強度和耐衝擊性,特別適合於製作高強度、承受負荷的零件。儘管鍛造能夠製作非常堅固的零件,但其對形狀的限制較大,無法像壓鑄那樣製作複雜幾何形狀。鍛造的生產週期較長,並且設備成本高,適合中小批量生產,並且常用於航空、軍事和重型機械部件。
重力鑄造利用金屬液的重力流入模具,這是一種相對簡單且成本較低的工藝。雖然重力鑄造在設備與模具方面具備優勢,能夠達到較長的模具壽命,但金屬流動性較差,使其在細節精度與表面光滑度上不如壓鑄。這使得重力鑄造適用於較大、結構簡單的零件,且多用於中低量的生產,對精度要求不高的場合。
加工切削是一種逐層去除金屬的工藝,適用於高精度要求的零件。這種方式的最大優勢是可以實現極高的精度和光滑表面,適用於複雜結構的精密加工。然而,加工時間長、材料浪費較多,導致單件成本較高,因此加工切削更適合少量生產或精密修整。
這四種工法各有不同的優缺點,根據零件的設計需求、批量大小與成本限制,可以選擇最適合的加工方式。
壓鑄是一種利用高壓將熔融金屬迅速射入模具,使金屬在短時間內冷卻成形的加工方式,適合製作外型複雜、表面細緻且尺寸一致的金屬零件。製程從金屬材料挑選開始,常用的鋁合金、鋅合金與鎂合金在熔融後具備良好流動性,能在充填模腔時保持穩定速度並呈現完整結構。
模具系統是壓鑄流程中的核心,由固定模與活動模閉合後形成模腔。模具內部通常設計澆口、排氣槽與冷卻水路,使金屬液能順利進入模具並穩定凝固。澆口負責控制金屬液的流向;排氣槽讓模腔中的空氣有效排出,避免造成充填不全;冷卻水路則維持模具溫度,使凝固速度一致,提高成形品質。
當金屬被加熱至熔融狀態後,會被送入壓室,再在高壓推動下以高速射入模具腔體。高壓射出的動作讓金屬液在瞬間填滿所有細部結構,即使是薄壁、尖角或曲面,也能清晰呈現。金屬液進入模具後開始迅速散熱,並在極短時間內完成由液態轉為固態的過程。
金屬完成凝固後,模具開啟,由頂出機構將零件推出。脫模後的產品通常會經過修邊、打磨或簡易後處理,使外觀更為平整並符合使用需求。壓鑄透過材料特性、模具精準結構與高壓射出的協同作用,打造出高品質、高效率的金屬成形流程。