壓鑄以高壓將金屬液迅速推入模具,使複雜形狀與細微結構得以快速成型。其成型週期短、尺寸一致性高,表面平滑度良好,後加工需求相對較低。當製造量提升時,模具成本能有效攤提,使單件成本下降,是需要大量生產與高精度並存時的常見工法。
鍛造透過外力塑形金屬,使材料纖維流向更緊密,因此強度與耐衝擊性明顯高於其他成型方式。儘管鍛造件在結構性能上極具優勢,但其成型速度較慢、模具製作要求高,加上難以製作複雜外型,通常應用於承受高負載與高壓環境的零件。
重力鑄造依靠金屬液自然流入模具,工序穩定、設備簡單,但因流動性受限,細節呈現度較低,尺寸精度也不及壓鑄。冷卻時間較長,使產量受限,多用於結構簡單、壁厚較均勻的中大型零件,適合中低產量需求。
加工切削透過刀具移除材料,能實現極高的尺寸精度與優異的表面品質,是四大工法中精度最突出的方式。然而其製程耗時、材料損耗高,使單件成本提升,常用於少量訂製、原型打樣,或作為壓鑄後的精修工序,用以達到特定關鍵尺寸。
不同工法在效率、精度、成本與產量上的特點明確,依照零件設計與預期使用情境選擇最合適的加工方式,能讓製程與品質達到更好的平衡。
在壓鑄製程中,品質要求極高,尤其是對於精度、結構強度與外觀的要求。常見的品質問題包括精度偏差、縮孔、氣泡和變形等,這些問題不僅會影響產品的功能性,也可能對其使用壽命產生不利影響。因此,對這些問題進行有效檢測是品質管理中至關重要的一環。
壓鑄件的精度評估是確保產品符合設計要求的首要步驟。由於模具的磨損、金屬熔液的流動性以及冷卻速率等因素,可能導致尺寸偏差。為了確保產品精度,通常會使用三坐標測量機(CMM)進行檢測。這類設備可以準確測量製品的尺寸並與設計圖紙進行對比,確保每個製品符合規範。
縮孔是壓鑄過程中常見的問題,特別是在製作較厚部件時。由於金屬熔液在冷卻過程中會收縮,會在內部形成孔洞,這會降低壓鑄件的強度。為了檢測縮孔,X射線檢測技術是常用的手段。該技術能夠穿透金屬,顯示出其內部結構,及時發現縮孔並做出調整。
氣泡問題通常發生在金屬充模過程中,由於空氣未完全排出,會在製品內部形成氣泡。這些氣泡會削弱金屬的密度和結構,從而影響強度與耐用性。超聲波檢測是識別氣泡的有效方法,通過反射波來檢測氣泡的大小與位置,及早發現問題。
變形問題則與冷卻過程中的不均勻收縮有關。當金屬冷卻不均時,可能會導致壓鑄件的形狀變化,這對產品的功能性及外觀會產生影響。為了減少變形的風險,使用紅外線熱像儀來監控冷卻過程中的溫度分佈是有效的方式,能幫助保持冷卻過程的均勻性。
壓鑄是一種利用高壓將熔融金屬射入模具中成形的製程,能在短時間內打造尺寸穩定、外觀精細的金屬零件。常用的壓鑄金屬包含鋁合金、鋅合金與鎂合金,這些材料具有熔點低、流動性佳與凝固速度快的特性,能夠在高壓填充下準確進入模腔的細微結構。
壓鑄模具通常由高強度耐熱鋼製成,分為動模與定模兩部分。模具閉合時形成完整模腔,並透過流道、澆口與排氣槽控制金屬液的流向與排氣效率。模具內部設有冷卻水路,用於維持穩定溫度,使每次成形都能保持一致品質。當模具合模後,整個系統即進入高壓射出階段。
實際射出過程從金屬熔融開始。金屬被加熱至液態後倒入壓室,由活塞以高速推進,使金屬液瞬間被壓入模腔。高壓能讓金屬完全填滿每個細節,避免縮孔與空洞的產生。金屬在模腔中迅速冷卻並凝固後,模具開啟,頂出裝置將成品推出,接著進行去毛邊、修整等後續處理。
整個壓鑄流程從金屬材料選擇、模具設計到高壓射出,每一步都影響產品的強度與外觀,使壓鑄成為高精度金屬加工的重要技術。
壓鑄模具的結構設計決定金屬液在高壓射入時的流動方式,因此型腔幾何、流道大小與澆口位置都需要依材料特性與產品形狀精準配置。當流道阻力分布均衡,金屬液能穩定且快速充填,使薄壁、尖角與細節完整成形,避免縮孔、填不足或局部變形。若流向不順或分布不均,容易造成渦流與冷隔,使成品精度下降並增加不良率。
散熱設計則主導模具溫度的穩定性。壓鑄過程會產生劇烈高溫,若冷卻通道佈局不合理,模具會形成熱集中區,使工件表面出現亮痕、粗糙紋或冷隔痕跡。良好的水路設計能讓模具在生產循環中快速降溫,保持穩定作業溫度,提升冷卻效率,並降低熱疲勞造成的細裂,使模具壽命更加延長。
型腔加工精度則影響產品表面品質。加工越精細、表面越平滑,金屬液貼附越均勻,使成品外觀更加細緻。若搭配耐磨或表面強化處理,能減少長期生產造成的磨耗,使大量生產下的表面品質仍能保持一致,不易出現流痕與粗糙紋。
模具保養的重要性體現在生產的穩定性與長期耐用度。排氣孔、頂出系統與分模面在長期運作後容易累積積碳、粉渣與磨痕,若未定期清潔或修磨,會造成頂出不順、毛邊增多或散熱效率下降。透過固定保養與檢查,可讓模具維持最佳狀態,使壓鑄製程穩定並提升整體品質。
鋁、鋅、鎂是壓鑄製程中最常見的三種材料,它們在重量、強度、耐腐蝕與成型特性上表現不同,適合的應用領域也不一致。鋁材以低密度與高比強度受到重視,能有效降低零件重量,同時提供穩定剛性。鋁合金具有良好耐腐蝕特性,可應對溫濕差異較大的環境,加上散熱表現優異,使其適合外殼、支撐件與散熱部件。鋁的流動性中等,遇到薄壁或複雜結構時需搭配高精度模具才能確保成型完整。
鋅材最大特色為極佳流動性,能輕鬆填滿微小細節與複雜幾何,是精密零件與高外觀要求零件的常見選材。鋅的熔點低,使壓鑄週期更短,提升大量生產的效率。鋅合金具備良好的耐磨性與韌性,可承受反覆操作,但因密度較高,在重量敏感的產品中相對不具優勢。
鎂材則以最輕金屬聞名,能顯著降低產品重量。鎂合金具有高比強度,可在保持剛性的同時達到輕量化效果,因此常被應用於大型外殼、結構支架或手持式產品。鎂的流動性優於鋁,但對溫度與製程變化更敏感,需要更嚴謹的成型條件來確保表面品質與尺寸準確度。
鋁強調結構與散熱平衡、鋅擅長精細成型、鎂則提供極致輕量化,根據產品的性能需求選擇材料能讓壓鑄製程更具效率與品質。